Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 22nd Global Congress on Biotechnology Berlin, Germany.

Day 2 :

Keynote Forum

Oara Neumann

Rice University, USA

Keynote: Plasmonic nanostructures for imaging and targeting drug delivery

Time : 16:20-16:40

Conference Series Biotechnology 2019 International Conference Keynote Speaker Oara Neumann photo
Biography:

Oara Neumann is the Peter M and Ruth L Nicholas Research Scientist at Rice University (a fully funded, endowed research scientist position at the university). She has completed her PhD and Postdoctoral study in Applied Physics at Rice University, MSc in Chemical Physics at Weizmann Institute of Science, Israel and another MSc in Analytical Chemistry from Bucharest University, Romania. She is the Pioneer of nanoparticle-based solar thermal applications. She holds several patents and has published more than 25 refereed articles and has an h-index of 16.

Abstract:

Engineering a compact, near-infrared plasmonic nanostructure with integrated image enhancing agents for combined imaging and therapy is an important nano-medical challenge. To overcome this challenge we designed a nanostructure with NIR plasmonic signatures composed of a 50 nm Au core surrounded a SiO2 inner-shell doped with contrast agents and an outer Au shell. The plasmon resonance of this nanostructure known as a nano-Matryoshka (NM), can be tuned to the desired wavelength by varying the thickness of the layers. The encapsulated contrast agents used in this study are Fe(III)-DOTA, Gd(III)-DOTA and fluorescent dyes. The Fe(III)-NM based contrast agents are found to have relaxivities two times greater than the widely used Gd(III)-DOTA, providing a practical alternative for T1 MRI contrast agent that eliminates Gd(III) patient exposure entirely. Additionally, the internalization of fluorescent dyes and MRI contrast imaging agents within the NM substantially reduces the toxicity while maintaining a free nanoparticles surface for further bio-functionalization.

Conference Series Biotechnology 2019 International Conference Keynote Speaker Guido Krupp,  photo
Biography:

Guido Krupp is a CEO and President of AmpTec GmbH. He received his PhD Degree from Würzburg University and Max-Planck-Institute Martinsried in 1981. He was Postdoc at Yale University from 1983 to 1987. He was a Research Group Leader at Kiel University from 1987 to 2002 and Founder of artus GmbH, 1998 and AmpTec GmbH, 2005 and KSK Diagnostics GmbH, 2015. His research interests include nucleic acid technology with focus on RNA, plant pathogens (viroids), ribozymes and telomerase. He has more than 60 publications, Editor of Ribozyme Biochemistry and Biotechnology and Editorial Board of Biotechnology Annual Review.

Abstract:

Synthetic mRNAs from AmpTec have achieved a world-wide acceptance. AmpTec’s mRNAs are available as GMP grade products and have been introduced in several clinical trials in Europe, Australia and USA. Availability of high quality synthetic mRNAs is crucial in enabling significant progress in this field. Worldwide, a very limited number of active manufacturers of high quality mRNAs, AmpTec continues to realize its obligation to support the entry of new players by providing customized, mRNA products at small and large scales, from mg to grams. Applications of synthetic mRNA include reprogramming of human cells; antigen expression for vaccination projects in oncogenesis, infectious disease and allergy prevention; protein-replacement therapies. In a recent overview, applications and corresponding synthetic mRNA quality requirements were presented by Quabius & Krupp in New Biotechnology 2015. Syn-mRNAs can be generated by in vitro transcription (IVT) from defined templates containing the synthetic gene of interest. Optimal mRNA activity depends on a long, unmasked poly(A) tail, but long hompolymeric sequence are not reliably propagated in E.coli. Our alternative procedure uses PCR products as IVT-templates resulting in very well defined and easily modified poly(A) tails. Possible problems: Challenging sequences can lead to poor results in generation of the PCR template (AmpTec workflow) or (ii) during in vitro transcription reactions (workflow of all current mRNA manufacturers). For both steps (i) and (ii), results and trouble shooting are presented. Quality requirements and QC methods for GMP-grade synthetic mRNAs in therapeutic applications are presented.

Break: Networking & Refreshments 11:00-11:15 @ Sylt Foyer

Keynote Forum

Anna S Vikulina

Fraunhofer Institute for Cell Therapy and Immunology, Germany

Keynote: The layer-by-layer technology: Design of novel soft, hard and hybrid advanced biomaterials for drug delivery

Time : 16:40-17:00

Conference Series Biotechnology 2019 International Conference Keynote Speaker Anna S Vikulina photo
Biography:

Anna S Vikulina has completed her PhD in the field of Biological Science in Lomonosov Moscow State University, Russia. Currently, she is Marie-Curie Fellow in Fraunhofer Institute for Cell Therapy and Immunology, Potsdam, Germany. Her research is focused on the development of drug delivery carriers for controlled drug delivery and testing as well as for deciphering the pathways of biological action and transport of drugs. She has been awarded by prestigeous Alexander Von Humboldt and Marie-Curie Fellowships, served as a member of Organizing Committees at international conferences and scientific olympiads. She is also a guest editor in Micromachines Journal.

Abstract:

Now-a-days sequential deposition of naturally derived and oppositely charged biopolymers known as the layer-by-layer (LBL) technology became one of the key modern strategies for generating functional biomaterial coatings for diverse applications such as tissue engeenering, implant coatings and drug delivery. This was largely driven by the power of the LBL approach for biomimetic of extracellular matrix with a high precision at the Nano scale. The LBL technique has been also combined with a variety of soft and hard species including nanoparticles, carbon nanotubes, lipid bilayers in order to endow these hybrid materials with unique properties. More recently the LBL technology has been developed towards the coating of peculiar templates ranging from soft biomaterials (emulsions, liposomes and biological cells) to hard cores of sophisticated geometries (graphene, nanoparticles, inorganic crystals and their assemblies). This talk will focus on the design and applications of hybrid biomaterials made up taking advantage of the LBL approach. Among the variety of unconventional assemblies and architectures, coupling of the LBL coating with lipid and polymeric structures (soft), gold nanoparticles (hard-on-soft) and vaterite calcium carbonate crystals (hard) will be considered. Passive and active (temperature triggered) molecular transport within the LBL assembled structures will be addressed. Perspectives of the use of these hybrid assemblies will be highlighted.

  • Pharmaceutical Biotechnology | Nano Biotechnology | Medical Biotechnology | Genetics/Genetic Engineering
Location: Sylt 5
Speaker
Biography:

Oara Neumann is the Peter M and Ruth L Nicholas Research Scientist at Rice University (a fully funded, endowed research scientist position at the university). She has completed her PhD and Postdoctoral study in Applied Physics at Rice University, MSc in Chemical Physics at Weizmann Institute of Science, Israel and another MSc in Analytical Chemistry from Bucharest University, Romania. She is the Pioneer of nanoparticle-based solar thermal applications. She holds several patents and has published more than 25 refereed articles and has an h-index of 16.

 

Abstract:

Conventional bioethanol for transportation fuel typically consumes agricultural feedstocks also suitable for human consumption and requires large amounts of energy for conversion of feedstock to fuel. Alternative feedstocks, optimally those not also in demand for human consumption, and off-grid energy sources for processing, would both contribute to making bioethanol far more sustainable than current practices.  Cellulosic bioethanol production involves three steps: the extraction of sugars from cellulosic feedstock, the fermentation of sugars to produce ethanol, and the purification of ethanol through distillation. Traditional production methods for extraction and distillation are energy intensive and therefore costly, limiting the advancement of this approach. Here we report an initial demonstration of the conversion of cellulosic feedstock into ethanol by completely off-grid solar processing steps. Our approach is based on nanoparticle-enabled solar steam generation, where high-efficiency steam can be produced by illuminating light-absorbing nanoparticles dispersed in H2O with sunlight.  We used solar-generated steam to successfully hydrolyze feedstock into sugars, then used solar steam distillation to purify ethanol in the final processing step. Coastal hay, a grass grown for livestock feed across the southern U. S., and sugar cane as a control, are successfully converted to ethanol in this proof-of-concept study.  This entirely off-grid solar production method has the potential to realize the long-dreamed-of goal of sustainable cellulosic bioethanol production.

 

Speaker
Biography:

Jiali Li has completed her PhD in Physics at the City University of New York in 1999 and Postdoctoral studies from Depertment of Physics, Harvard University. She is a Physics Professor at the University of Arkansas since 2002. She has been one of the pioneers in developing solid-state nanopore technology and its applications in single DNA and protein analysis. She has published more than 30 papers in reputed journals. In recent years, she has been working on protein aggregation, detection and characterization with solid-state nanopore device combined with other nanotechnologies.

Abstract:

In this work, we analyze the process of protein aggregation with a nanopore device combined with AFM and DLS. Our model proteins used are ß-lactoglobulin variant A (bLGa) and a neuronal Tau protein. The main component of a nanopore device is a nanometer size pore, 5 to 20 nm in diameter, fabricated in a free-standing silicon nitride membrane supported by a silicon substrate which separates two PDMA chambers containing salt solution. A stable ionic current is established by applying a biased voltage on a pair of silver chloride (AgCl) electrodes across the nanopore membrane. When a charged protein molecule or a protein aggregate passes through a nanopore, a protein aggregate which has larger volume than a single protein molecule would block larger amount of current or generate a greater current drop amplitude, therefore a nanopore device can be used to characterize protein aggregation in salt solution at single molecule level. The volume of translocating protein molecules or aggregates are estimated using a calibrated nanopore by a standard that has known geometry such as a dsDNA molecule. We show that by using a reference dsDNA molecule, solid state nanopore method is capable of measuring protein aggregation number and the aggregation number distribution in the conditions that is close to their native aqueous solution environment. The nanopore experiments were performed under applied voltages from 60-210 mV at different pH, temperature and salt concentration. We present data of bLGa and Tau self-association and aggregation measured by nanopore method, AFM and DLS.

 

 

Speaker
Biography:

Gisele Rodrigues Atayde is currently pursuing Master’s Degree student with the Integrated Engineering Group (EESC - USP) and is a Specialist in Industrial Engineering at the University of São Paulo (Brazil) respectively. She graduated in Business Administration from Faculdade Gennari e Peartree University. Her research focuses on academic entrepreneurship, especially the application of technological planning on the academic research groups; including agile project management techniques and technology management tools. Her research interests includes: creation of academic spin-offs, technological entrepreneurship, technology project management and triple helix.

Abstract:

Fostering the creation of academic startups have become a key concept of institutional and governmental directives and strategies of several developed countries. Some incentives are generated within universities and innovation centers which takes into account the necessity to train researchers in management practices, patenting and marketing studies to maximize the possibility of new business originated from research. Regarding the biotechnology field with focus on developing new products, research business opportunities targeting usually often arises after several years of study and even after publications and patenting. In addition to this, there are high research costs involved as well as numerous risks and failures inherent to development during the initial stages of research. Given this context, the necesseity to include facilitating agents that understand the field of ​​study as well as the current market trends and needs becomes important in order to assist researchers during the product development phase to ensure market adherence. One of the hypotheses of this study is that the leader of an academic research group can become a facilitating agent to promote and foster the development of new business. The general objective is to understand the processes involved, beggining with the criteria used to select potential projects until the culmination of a patent generation originated from a research group in the biotechnology field which is focused on production of medical drugs inside a Brazilian university. It is estimated that within the research process and exploration, there are some market validations that can be made during the development phase and can support the creation of new business.

Break: Lunch Break 13:00-14:00 @ Restaurant Rienäcker
  • Poster Presentations 14:00-15:00 @ Sylt Foyer