Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Mirza Muhammad Faran Ashraf Baig

University of Hong Kong

Title: 2D DNA nanoporous scaffold promotes osteogenic differentiation of pre-osteoblasts

Biography

Biography: Mirza Muhammad Faran Ashraf Baig

Abstract

Biofunctional materials with nanomechanical parameters similar to bone tissue may promote the adherence, migration, proliferation, and differentiation of pre-osteoblasts. In this study, deoxyribonucleic acid (DNA) nanoporous scaffold (DNA-NPS) was synthesized by the polymerization of rectangular and double-crossover (DX) DNA tiles. The diagonally precise polymerization of nanometer-sized DNA tiles (A + B) through sticky end cohesion gave rise to a micrometer-sized porous giant-sheet material. The synthesized DNA-NPS exhibited a uniformly distributed porosity with a size of 25 ± 20 nm. The morphology, dimensions, sectional profiles, 2-dimensional (2D) layer height, texture, topology, pore size, and mechanical parameters of DNA-NPS have been characterized by atomic force microscopy (AFM). The size and zeta potential of DNA-NPS have been characterized by the zeta sizer. Cell biocompatibility, proliferation, and apoptosis have been evaluated by flow cytometry. The AFM results confirmed that the fabricated DNA-NPS was interconnected and uniformly porous, with a surface roughness of 0.125 ± 0.08035 nm. The elastic modulus of the DNA-NPS was 22.45 ± 8.65 GPa, which was comparable to that of native bone tissue. DNA-NPS facilitated pre-osteoblast adhesion, proliferation, and osteogenic differentiation. These findings indicated the potential of 2D DNA-NPS in promoting bone tissue regeneration.